كلية الحاسبات والمعلومات

الفرقة الثانية

الفصل الدراسي الاول

2020-2019

تاريخ الامتحان: 2020/1/15

نموذج اجابة ورقة كاملة

المادة: رياضيات (3)

: / أحمد مصطفى عبدالباقى مجاهد

صورة من الاسئلة

Benha University Faculty of Computers & Informatics **Subject: Mathematics(3)**

Time: 3 hours

Class: 2st Year Students, term1 (Jan 2020) Final Exam

Answer the following questions:

Q1)

a)- By using the principles of mathematical induction prove that $2^{2n}-1$ is divisible by 3. [10 marks]

b)- By using the inverse matrix, solve the following system.

[10 marks]

$$2x + 2y - 6z = 4$$

$$-x + y + 2z = 3$$

$$-3x + 5y + 3z = -1$$

Q2)

a)- By using the definition of the definite integrals, finds $\int_{0}^{2} x^{2} dx$ [10 marks]

b)- Find the eigenvalues and the eigenvectors of this matrix [15 marks]

$$\begin{pmatrix}
1 & -3 & 3 \\
3 & -5 & 3 \\
6 & -6 & 4
\end{pmatrix}$$

Q3:

[15 marks]

a) Let $\{A_i: i \in I\}$ be an indexing family of subsets of universal set U then show that for any non-empty subset B of U

$$B \cap (\cup_{i \in I} A_i) = \cup_{i \in I} (B \cap A_i)$$

b) Show that for all sets A, X, and Y

$$A \times (X \cap Y) = (A \times X) \cap (A \times Y)$$

Q4: [15 marks]

a) Using the Algebra of proposition to prove

$$\neg p \land \neg (p \land q) \equiv \neg p$$

b) Construct the truth table of the following compound propositions

$$(p \lor \neg q) \longrightarrow q$$

Q5 [20 marks]

- a) Let R be a relation defined on $\times N$ by $(a,b)R(c,d) \Leftrightarrow ad = bc$. Prove that R is equivalence relation and find equivalence class of [2,5], and [1,1].
- b) Let * be an associative binary operation on a set S which has an inverse. prove that the inverse is unique

GOOD LUCK, Dr. Ahmed Megahed Dr. Mostafa Hassan

نموذج الاجابة

السؤال الاول:

Clearly that at n=1, then the quantity $2^{2n} - 1$ is equal to 3 which is divisible by 3. Let the relation is true for n=k, which means that

$$2^{2k} - 1$$
 is divisible by 3 (*)

Now we try to prove the relation when n=k+1

At n=k+1, we have

$$2^{2k+2} - 1 = 2^2 2^{2k} - 1 = (3+1)2^{2k} - 1 = 32^{2k} + 2^{2k} - 1$$

Which is automatically divisible by 3.

b)

المعادلتين السابقتين يمكن كتابتها على الصورة

$$\begin{pmatrix} 2 & 2 & -6 \\ -1 & 1 & 2 \\ -3 & 5 & 3 \end{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix}$$

أو على الصورة

$$A \cdot X = C$$

رمنها نجد أن

$$A = \begin{pmatrix} 2 & 2 & -6 \\ -1 & 1 & 2 \\ -3 & 5 & 3 \end{pmatrix} \Rightarrow \therefore |A| = -8 \neq 0$$

$$\therefore A^{-1} = \begin{pmatrix} \frac{7}{8} & \frac{9}{2} & \frac{-5}{4} \\ \frac{3}{8} & \frac{3}{2} & \frac{-2}{8} \\ \frac{2}{8} & 2 & \frac{-4}{8} \end{pmatrix}$$

 $X = A^{-1} \cdot C$ وعلى ذلك يكون

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{146}{8} \\ \frac{50}{8} \\ \frac{15}{2} \end{bmatrix}$$

$$x = 146/8$$
 , $y = 50/8$, $z = 15/2$ ii نجد أن $z = 146/8$

السوال الثاني:

a) By using the definition of the definite integrals, finds $\int_{0}^{2} x^{2} dx$

From the definition of the definite integrals we have:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

Where $\Delta x = \frac{b-a}{n}$, $x_i = a + i\Delta x$, then in our problem a = 0, b = 2, $f(x) = x^2$

$$\Rightarrow \Delta x = \frac{2}{n}, \ x_i = \frac{2i}{n} \Rightarrow f(x_i) = \frac{4i^2}{n^2}$$

$$\Rightarrow \int_{0}^{2} x^{2} dx = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{8i^{2}}{n^{3}} = \frac{8}{n^{3}} \lim_{n \to \infty} \sum_{i=1}^{n} i^{2} = \frac{8}{n^{3}} \left(\frac{n(n+1)(2n+1)}{6} \right) = \frac{8}{3}$$

b) Firstly we have to get the eigenvalues as follows:

$$\det(A - \lambda I) = 0 \Rightarrow \det\begin{pmatrix} 1 - \lambda & -3 & 3 \\ 3 & -5 - \lambda & 3 \\ 6 & -6 & 4 - \lambda \end{pmatrix} = 0$$
$$\Rightarrow -\lambda^3 + 12\lambda + 16 = 0 \Rightarrow \lambda = 4, -2, -2$$

At $\lambda = 4$ we have

$$(A - \lambda I) = \begin{pmatrix} -3 & -3 & 3 \\ 3 & -9 & 3 \\ 6 & -6 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -3 & -3 & 3 \\ 3 & -9 & 3 \\ 6 & -6 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & \frac{-1}{2} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_3 \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 1 \end{pmatrix}$$

Then for any $x_3 \in \Re$, say $x_3 = 1$, the first eigenvalues is

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 1 \end{pmatrix}$$

At $\lambda = -2$ we have

$$(A - \lambda I) = \begin{pmatrix} 3 & -3 & 3 \\ 3 & -3 & 3 \\ 6 & -6 & 6 \end{pmatrix} \Rightarrow \begin{pmatrix} 3 & -3 & 3 \\ 3 & -3 & 3 \\ 6 & -6 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

Then for any $x_1, x_3 \in \Re$, say $x_1 = 1, x_3 = 1$, the second eigenvalues is

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

*Q*3)

$$[02:] \in A \times (X \cap Y) \iff \alpha \in A \land x \in (X \cap Y) \iff (\alpha, x) \in (A \times X) \land (\alpha, x) \in (A \times Y)$$
$$\implies (\alpha, x) \in (A \times X) \cap (A \times Y)$$

Q4)

[01]
$$\neg p \land \neg (p \land q) \equiv \neg p \land (\neg p \lor \neg q) \equiv \neg p \text{ (absorption lows)}$$

[02]	p	q	$\neg q$	$(p \lor \neg q)$	$(p \lor \neg q) \longrightarrow q$
	T	Τ	F	Τ	Τ
	T	F	Τ	Τ	F
ļ	F	Τ	F	F	Τ
	F	F	Τ	Τ	F

Q5)

- [01] The relation R is Reflexive, symmetric, and transitive, hence R is equivalence [2,5]={(2,5), (4,10),(6,15), (8,20),...}, [1,1]={(1,1), (2,2), (3,3),...}
- [02] Suppose that $x \in S$ has inverses y and z then y*x=x*y=e. z*x=x*z=eNow y=y*e=y*(x*z)=(y*x)*z=e*z=z

Hence the inverse of x is unique.

Dr. Ahmed Mostafa Megahed