

Benha University 1st Term Exam (January 2018) Final Exam

Class: 1st Year Students (تخلفات)

Subject: Physics (I)

Faculty of computer & informatics

Date: 28/12/2018 Time: 3 Hs.

Examiners: Dr. Salah Hamza

د صلاح عید ابراهیم حمزة ورقة كاملة

Q) Choose the correct answer and shaded its circle in the answer sheet: [115 marks] Note: Select one answer only - don't use corrector - don't choose more than one answer.

Q1) Answer the following questions

The answer in red color

- 1. The dimensions of the velocity is, v, is given by: (a) LT^{-1} , (b) $L^{-1}T^{-2}$, (c) L^2T^{-2}
- **2.** Young's modulus of elasticity is given by: (a) $\frac{F_{\perp} \ \ell}{A \ \Delta \ell}$ (b) $\frac{F_{||}}{A \ \theta}$ (c) $-\frac{P \ V}{\Delta V}$
- 3. For an object performing simple harmonic motion, the maximum velocity is given by: (a) A, (b) ω A, (c) ω^2 A
- 4. We can classify waves according to the motion of particles into: (a) Transverse, (b) plane, (c) Spherical
- **5.** Chose the correct answer: (a) $x = v_0 + \frac{1}{2}at^2$, (b) $\Delta x = v_0 + at$, (c) $\Delta x = \frac{1}{2}(v_0 + v)t$
- **6.** The ratio of change in length to original length is defined as: (a) Volume strain (b) Longitudinal strain (c) Tangent strain.
- 7. Point P is known as: (a) Breaking point, (b) Elastic limit, (c) Plastic limit
- 8. Point R is known as: (a) Breaking point, (b) Elastic limit, (c) Plastic limit
- 9. In OP range: (a) Stress=Strain, (b) Strain ∞ Stress, (c) Stress ∞ Strain
- 10. In OP range, the behavior is, (a) Plastic (b) Elastic, (c) no answer
- 11. Hooke's law is valid in the range: (a) OP, (b) PR, (c) no one

- 12. For an object performing simple harmonic motion, the maximum velocity is given by: (a) A, (b) ω A, (c) ω^2 A
- 13. The main equation of simple harmonic motion is: (a) $\ddot{X} = -\omega^2 X$, (b) $X = -\omega^2 \ddot{X}$, (c) $\ddot{X} = \omega^2 X$
- 14. The work done per unit volume in stretching an elastic wire is given by:
 - (a) $\frac{1}{2} \times \text{Stres } s \times \text{Strain}$, (b) $\text{Stres } s \times \text{Strain}$, (c) $\frac{1}{4} \times \text{Stres } s \times \text{Strain}$
- **15.** Poison's ratio is given by: (a) $\frac{-dr/\ell}{d\ell/r}$, (b) $\frac{-\ell dr}{r d\ell}$, (c) $\frac{-d\ell/\ell}{dr/r}$

Q2) Using the dimensional analysis, derive an expression for the time period of oscillation of a simple pendulum. Assume that the time period depends on (i) mass,

(ii) length and (iii) acceleration due to gravity

------ Solution ------

Assume that t, m, ℓ and g are related through the equation:

$$t \propto m^x \ell^y g^z$$

$$t = k m^x \ell^y g^z$$

By using the dimensional method

$$T = M^x L^y (LT^{-2})^z$$

$$M^0 L^0 T^1 = M^x L^{y+z} T^{-2z}$$

Comparison the powers of M, L and T on both sides

$$x = 0$$
, $y + z = 0$, $-2z = 1$

Solving the three equations,

$$x = 0$$
, $y = \frac{1}{2}$, $z = -\frac{1}{2}$

$$\therefore t = k \sqrt{\frac{\ell}{g}}$$

Q3) Prove that the relation between the linear velocity υ , angular frequency ω	
wave number k is $\omega = kv$.	
	Solution
Since	
	$2\pi = \omega T$
and	
	$2\pi = k\lambda$
So	
	$\omega T = k \lambda$
Or	
	$\omega = k \lambda * \frac{1}{T}$
But	
	$v = \frac{1}{T}$
So	
	$\omega = k \lambda v$
By using the relation	
	$\lambda v = v$
We get	

With our best wishes Prof. Dr. Salah Hamza and

 $\omega = k \upsilon$